IGP Convergence and Stability: Lets have it both

Cengiz Alaettinoglu cengiz@packetdesign.com

WIRED Workshop, Timberline Lodge, Oregon

Why care about convergence?

- Your IP network
 - → 69 million *happy* packets
 - → Zero packets lost
 - → 100% jitter < 700 μ s

- Your IP network during IGP convergence
 - \rightarrow outages upto 2.5 mins
 - → massive reordering & jitter
 - routing loops result in blender events

(data from NANOG 22 talk)

Convergence vs restoration times

- Convergence time: all routers have heard the news and computed new routing tables
 - → SPF time + propagation delays + per hop scheduling delays
- Restoration time: time to first successful data packet transmission after failure
 - → SPF time + per hop scheduling delays
 - because the link state packet is ahead of the first data packet by an SPF time
- I am ignoring detection time and FIB install time here, vendors are way ahead in detection aspect, for FIB install see my feasible next hop talk at Atlanta IETF.
 Packet Design

SPF Times

• Benefits of incremental algorithms

- → scaling to number of nodes
- → to full mesh (regular SPF goes up to seconds)
- Iess cpu intensive farther from the failure WIRED Workshop, Timberline Lodge, Oregon

Convergence vs restoration times: the math

• Convergence time

- → SPF time + propagation delays + per hop scheduling delays
- → low hundreds of milliseconds

• Restoration time

- → SPF time + per hop scheduling delays
- → tens of milliseconds

Why arent we there?

- → We are afraid (for good reasons) to hurt ourselves!
- \rightarrow We need a defense mechanism.

Stability vs Restoration Time

- After a certain level of external instability (e.g. flaky layer 2 stuff), routing system itself starts introducing instability, ..., causing a network wide meltdowns
 Many ISP examples to choose from
- Defense mechanism: rate limit SPF computation
 - → This hurts convergence time
 - → and causes routing loops (NANOG 24)

We need a better defense mechanism that works and doesnt hurt convergence!

 Packet Design
 WIRED Workshop, Timberline Lodge, Oregon

Defense mechanism: damping

• Multiple layers of defense:

- → At link layer damp flaky links only on recovery
 - never on failure where the convergence matters
- → Damp flaky links again at routing layer
 - dont trust the device driver writer
 - again damp good news only
- Damp routers who don't implement this right
 - dont trust the other vendor
 - again damp good news only, per link?
- → Damp your SPF (rate limit)
 - only if you are spending > x% of cpu on spf

Challenges

• Understanding the IGP behavior

- → One set of parameters does not fit all ISPs
- → Measurement and analysis
- A solid damping implementation
 - → Simulate, emulate, and test using measured/random data

• Parameters

- → If 10 parameters needs to be configured, it wont happen
 - adaptive parameters w/ good starting defaults
 - aggressiveness configurable
- Winning back ISPs' trust

Acknowledgments

- Graphs are from earlier talks in collaboration w/ Stephen Casner, Haobo Yu, Cha-chi Quan, and Van Jacobson.
- Our ISP partners for comments and for letting us use their topologies for analysis.
- And many in the routing community for constructive criticism and suggestions.