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ABSTRACT
Pinpointing autonomous systemswhich deploy specific inter-domain
techniques such as Route Flap Damping (RFD) or Route Origin Val-
idation (ROV) remains a challenge today. Previous approaches to
detect per-AS behavior often relied on heuristics derived from pas-
sive and active measurements. Those heuristics, however, often
lacked accuracy or imposed tight restrictions on the measurement
methods.

We introduce an algorithmic framework for network tomog-
raphy, BeCAUSe, which implements Bayesian Computation for
Autonomous Systems. Using our original combination of active
probing and stochastic simulation, we present the first study to
expose the deployment of RFD. In contrast to the expectation of the
Internet community, we find that at least 9% of measured ASs enable
RFD, most using deprecated vendor default configuration parame-
ters. To illustrate the power of computational Bayesian methods
we compare BeCAUSe with three RFD heuristics. Thereafter we
successfully apply a generalization of the Bayesian method to a
second challenge, measuring deployment of ROV.

CCS CONCEPTS
•Mathematics of computing→Bayesian computation; •Net-
works→ Public Internet; Routing protocols.
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1 INTRODUCTION
In the mid ’90s, many global backbone BGP-speaking routers were
under-powered and began to experience damaging CPU load in the
presence of BGP churn, frequent announcements and withdrawals
of the same prefix. Some core operators met with vendors to design
Route Flap Damping (RFD) and codified it in RFC 2439 [43]. With
RFD, routers maintain a penalty value per prefix per session. Pre-
fixes with a penalty above a given threshold are damped, e.g., newly
received announcements are suppressed and not considered as
suitable alternatives to reach a destination.

In 2002-2003, it was shown by Mao et al. [24] that RFD was too
aggressive and had a negative affect on Internet routing. Routers
in 2006 were more powerful so it was presumed that operators
followed best practice and removed RFD from their configurations
[5]. In 2011, Pelsser et al. [30] showed that more considered settings
of the RFD parameters were safe and helpful, and consequently it
was believed that operators would re-enable RFD. But at no time in
all this history was the actual deployment of RFD measured.

Understanding RFD deployment and parameters is important
because RFD can cause problems reaching Internet destinations [9,
24] and can obscure active and passive control plane measurements
for researchers. More importantly, RFD is the poster child for a
range of problems: those where we localise routing properties in the
Internet ecosystem from external measurements. Heuristics [32, 41]
have been used to tackle specific cases of such problems but we
seek here to create a general approach.

Such problems fall under the heading of network tomography: in-
ference about internal network behavior from end-to-end measure-
ments. We present a new tomographic approach here—BeCAUSe—
which is adapted to this class of problems. BeCAUSe uses computa-
tional Bayesian techniques, which have large advantages but have
sometimes been discarded in favour of heuristics because naive
approaches (e.g., Gibb’s sampling) to computational Bayes are com-
putationally costly. In this paper, we show how more advanced
approaches (Metropolis-Hastings [22, 25] and Hamiltonian Monte
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Figure 1: Overview of Measurement Infrastructure and BeCAUSe.

Carlo [13]) can find RFD ASs from path measurements. From this
we can learn much about the existing deployment of RFD.

The paper makes the following key contributions:

(1) We present a new group of network tomography algorithms
adapted to the problem of large-scale routing inference chris-
tened BeCAUSe (BayEsian Computation for AUtonomous
SystEms)—see § 3 and § 5.

(2) We develop a measurement infrastructure—RFD Beacons—to
provide the inputs to the tomography problem—see Figure 1
and § 4.

(3) We perform the first large-scale study of the deployment
of RFD in the wild, based on more than 2 months of data.
The results suggest that RFD is used more widely and less
carefully than one would hope or expect—see § 6.

We test BeCAUSe on the RFD and Route Origin Validation infer-
ence problems. We have limited ground truth data, but on that
data BeCAUSe has a precision of 100% and a recall of 87%. More
importantly, BeCAUSe reports not just a number, but also provides
a degree of certainty in its estimates.

2 BACKGROUND
This section briefly introduces Route Flap Damping (RFD), which
is our major measurement object, and binary network tomography.
We explain how to apply binary network tomography inference of
damping ASs from practical Internet measurement.

2.1 Route Flap Damping in BGP
A router configured to use RFD maintains a penalty value per prefix
per BGP session that defines when a prefix should be suppressed
or released. This value is additively increased with each announce-
ment or withdrawal for that prefix, and decreases exponentially
in between. When the penalty exceeds a threshold the prefix is
suppressed until the penalty decays below a second threshold.

We illustrate the RFDmechanics and the interplay of the key con-
figuration parameters in Figure 2. At 𝑡0, the penalty is initialised
to 0, and increases by a constant (1000) with each received an-
nouncement (green) or withdrawal (orange). Between each update,
the penalty decreases based on the half-life parameter. When the
penalty surpasses the suppress-threshold at 𝑡1 the prefix is with-
drawn. At 𝑡2, the prefix stops oscillating and therefore the penalty
reaches the reuse-threshold at 𝑡3, leading to the release of the previ-
ously damped prefix.

RFD was introduced 25 years ago. Its patchy history is illustrated
in Figure 3. Much has been learned about RFD’s mechanics [5, 17,
24, 30], but little is known about its deployment.

RFD may not be uniformly deployed throughout an AS. A net-
work operator can limit RFD to specific peers, e.g., only customers.
Reasons may be that some neighbors have proven to be particu-
larly noisy while others provide the only transit to some part of
the Internet and damping its routes may have major implications.
RFD can also be configured differently depending on the prefix
length. We encountered configurations where shorter prefixes were
damped more aggressively in one network and less aggressively in
a different AS.

We develop a method to perform controlled experiments (see
§ 4) to identify paths that contain RFD ASs. Having identified RFD
for certain paths, only leaves us with the problem of tracing back
the originating AS(s) on each path. The ideal measurement setup is
a direct peering between measurement probe and vantage point,
which is completely impractical given more than 70k ASs managed
by almost the same number of different organisations across the
globe. Luckily, pinpointing ASs that deploy RFD using path data
can be formulated as a binary network tomography problem.
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Figure 2: RFD router perspective: The penalty for a pre-
fix that oscillates between announcement (green) and with-
drawal (orange). The dashed, horizontal lines represent sup-
press and reuse-threshold. While RFD is active, the prefix is
not advertised to neighboring routers, i.e., a withdrawal is
sent just after 𝑡1, and only rescinded at 𝑡3.
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Figure 3: Timeline of Route Flap Damping.

2.2 AS Inference Problems in General
RFD is one of a wider class of problems where we seek to localise
particular routing policies or techniques in the inter-AS network.
Other problems in this space include finding ASs that use a partic-
ular community (some communities are transitive) or that black
hole a particular type of traffic for instance traffic whose origin
(signed through the RPKI) does not validate correctly. Apart from
understanding RFD, we seek to be able to solve a range of such
problems. To that end, we will also test the approach proposed here
on RPKI origin validation.

2.3 Binary Network Tomography
In network measurement it is often impractical to interrogate net-
work artefacts directly, either because of expensive overhead or
(as in our case) because the artefacts have diverse owners who in
many cases are competitors, and who have little interest in sharing
such information. Network tomography can come to the rescue
in these situations. However, our setting is unlike typical network
tomography. In our problem the node properties we seek to find
are not “problems” per se, so our approach is different though the
differences may appear subtle at first.

The essential nature of network tomography is to reveal inter-
nal characteristics of a network from external observations. For
example, we observe path properties, and wish to infer link or node
properties.

Typical tomography is quantitative, e.g., we observe volume of
traffic, or size of delays, in which case the relationship between node
and path properties are represented as linear equations, however,
there is a strand of work on binary (or Boolean) tomography, which
appears applicable here. Each node (each AS) is considered to either
have property A or not. Paths have property A if at least one node
on the path has property A, and if no nodes have the property, then
the path will not.

We express this mathematically by defining variable 𝑥𝑖 where,

𝑥𝑖 =

{
0 if node 𝑖 has property A,
1 if node 𝑖 does not have property A.

(1)

Then, path 𝑗 consisting of a set of nodes 𝑁 𝑗 ideally satisfies

𝑦 𝑗 =
∏
𝑖∈𝑁 𝑗

𝑥𝑖 , (2)

where

𝑦 𝑗 =

{
0 if path j has property A,
1 if path j does not have property A.

(3)

The result is a set of equations—one for each measurement1.
Ideally, solving these equationswould solve the localisation problem
and reveal the damping ASs.

While simple in theory, most tomography problems have a num-
ber of challenges:

(1) There are rarely enough path measurements to obtain a
unique solution and so some side information is needed to
help refine solutions. Steering towards the sparsest solution
is a common strategy when looking for network problems
(which are hoped to be rare) but is not applicable here where
one of the core goals is to identify the ASs that exhibit a
property, not just localise a problem.

(2) The noise inherent in (any set of) measurements may mean
the equations are inconsistent and hence have no solution.
Robust approaches will look for approximate matches, but
once again they often do so by introducing amodel (e.g.,Gauss-
ian noise) that is not appropriate in routing policy inference.

Moreover, an AS is not an atomic entity; it is a network in its
own right. It is common for an AS to implement different policies
at different ingress point or towards different peers [36] resulting
in a situation such as shown in Figure 4 where measurement of
paths 𝐽 and 𝐾 present contradictory results. However, this is not
the same as in typical tomography problems where varying results
are interpreted as a stochastic process (e.g., a loss process) because
the impact on paths 𝐽 and 𝐾 is (approximately) constant per path,
just different between the paths.

3 NETWORK TOMOGRAPHYWITH BeCAUSe
In this section, we present our algorithmic framework – BeCAUSe
(BayEsian Computation for AUtonomous SystEms) – for inferring
the cause of path observations. We reframe the binary tomogra-
phy problem into this setting where pure binary choices are not
possible, and use computational Bayesian inference. We apply this
specifically to BGP in Section 5.1 using the data from the RFD
measurement infrastructure. We demonstrate the applicability of

1It is worth noting that path changes during a study may result in more than one
measurement for each probe setting as in [10].
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Figure 4: An AS may apply different policies at different
ingress points or towards different peers resulting in mea-
surement where one path (𝐽 ) is subject to RFD and another
(𝐾) is not.

this algorithm to more general tomography problems by inferring
Route Origin Validation (ROV) in § 7.

3.1 Overview
We consider the binary property A of Autonomous Systems. Let
each AS have some proportion 𝑝𝑖 of routes to which it applies prop-
erty A. For example, a network operator may apply RFD only to a
particularly flappy set of customers, or have legacy configurations
in old equipment. We also define and often use the complementary
proportion 𝑞𝑖 = 1 − 𝑝𝑖 . We can think of these as probabilities, but
they are subtly different from those used, for instance, in loss infer-
ence where it would indicate a probability of loss for an arbitrary
packet.

Presuming that each AS contributes independently to the likeli-
hood of RFD on a single path2 the probability that a single path 𝐽
does not have property A is

P(𝐽 does not show A) =
∏
𝑖∈𝐽

𝑞𝑖 . (4)

On the other hand, if anyAS displays property A then the path will
show A. As several ASs could potentially display A, the probability
of any AS displaying the property is 1 minus the probability that
no ASs display A. These two cases define the likelihood model
for the observed dataset 𝐷 given the probability vector q of the
probabilities 𝑞𝑖 for each AS in D.

First consider the probability of a single path 𝐽 ,

P(𝐽 |q) =
{∏

𝑖∈𝐽 𝑞𝑖 , if path does not show A,
1 −∏

𝑖∈𝐽 𝑞𝑖 , if path shows A.

Then
P(𝐷 |q) =

∏
𝐽 ∈𝐷

P(𝐽 |q), (5)

describes the likelihood that we observe our data 𝐷 given the set
of values 𝑞𝑖 for the ASs under consideration.

A Maximum Likelihood Estimator (MLE) would seek to find q̂ or
p̂ that maximises (5). However, as we are in a probabilistic setting
there is scope to instead infer the distribution of 𝑞𝑖 or 𝑝𝑖 . That is,
2We are not presuming that ASs are independent. We are well aware that, for instance,
sibling ASs may have correlated policies. All we assume is that if a policy is not
ubiquitous within their AS, then their decision about which routes to filter is not based
on knowledge of the choices of their neighbours. This assumption is likely false in
some places, but much less so than the alternative interpretation simply for the reason
our technique is needed: in general, ASs share little of their internal business decision
making with competitors. Moreover the assumption is not needed at all for ASs that
have a uniform policy.

gather many possible values of 𝑝𝑖 , and the associated likelihood
of producing the data we observe, to determine not only the most
likely value, but also some measure of certainty about our results.
The output distribution of all the 𝑝𝑖 ’s together given the data 𝐷 ,
denoted P(p|𝐷), is called the posterior distribution. The individual
distributions P(𝑝𝑖 |𝐷) are called marginal distributions and will
provide information about which ASs are displaying our property
of interest.

The basic probabilistic model introduced in (5) mirrors the binary
tomography problem in § 2.3. The procedure can be generalised,
though, to other likelihood models. It could, for example, incorpo-
rate specific types of errors in the measurements.

The likelihood in (5) is a variant of the Poisson binomial distri-
bution and a closed form of P(p|𝐷) does not exist. Computational
Bayesian methods are required to sample from the posterior distri-
bution of interest.

3.2 Markov-Chain Monte Carlo
Markov-Chain Monte Carlo (MCMC) methods are a suite of com-
putational Bayesian methods that use a stochastic simulation to
approach complex inference problems. They are ideal when it is
easy to simulate potential solutions and calculate their likelihood,
but difficult to find the optimal solution, for example in the tomog-
raphy problems described above. As highlighted above, instead of a
single solution, we obtain many, in the form of a distribution, that
can be used to calculate quantities of interest. In the case of the
RFD problem we are estimating the RFD proportion of each node
and how confident we are in these estimates.

In general, MCMC methods are used to infer the distribution of
some set of parameters p, given some dataset 𝐷—in tomography
this will be the set of all measured paths (i.e., infer P(p|𝐷)). Using
Bayes rule converts this into the form required for inference.

P(p|𝐷) ∝ P(𝐷 |p) · P(p), (6)

where P(𝐷 |p) is a likelihood model associated with the data as
described in (5) and P(p) is the prior distribution, incorporating
our knowledge of the parameters.

MCMC methods are designed to move around the space of pos-
sible solutions to the problem and take samples (i.e., possible solu-
tions) based on the associated likelihoods. The different methods to
move around the space give rise to an active research area. Here we
use two well known MCMC methods, Metropolis-Hastings [22, 25]
and Hamiltonian Monte Carlo [4, 13]. These MCMC methods begin
with some underlying knowledge of the parameters of interest, the
prior distribution P(p). By using the information from the data,
𝐷 , we update the likely values of each 𝑝𝑖 according to the model
likelihood, resulting in the posterior distribution P(p|𝐷). We can
also use a uniform distribution for the prior if there is no underlying
knowledge of the parameters.
Metropolis-Hastings (MH). The MH algorithm creates a Markov
chain to explore the space of interest P(p|𝐷). At each step a new
candidate for the probability vector p′ is randomly proposed using
the proposal distribution Q(p′ |p) (satisfying technical conditions
[35]) conditioned on the current state p. The proposal p′ is accepted
or rejected in a Metropolis update step with probability given by
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the acceptance probability

𝛼 = min
(
1,
P(p′ |𝐷) · Q(p|p′)
P(p|𝐷) · Q(p′ |p)

)
. (7)

The acceptance probability 𝛼 is calculated by substituting (6) and
the choice of Q(p′ |p).
Hamiltonian Monte Carlo (HMC). HMC is related to Metropo-
lis Hastings but uses Hamiltonian dynamics to explore the space by
translating the density function of interest into a potential energy
function and including a momentum variable [4]. The method uses
a Markov Chain as in MH but new candidates are proposed by
propagating the current state along a Hamiltonian trajectory using
a Gaussian distributed momentum parameter. To obtain the sam-
ples of interest the auxiliary momentum parameters are ignored
(marginalised over). This allows for multidimensional updates and
allows the sampler to escape from local optima. HMC also uses a
Metropolis update, and the acceptance probability uses the ratio of
the auxiliary distribution of both the parameters of interest and the
momentum.

In both MH and HMC the chain is generated from the proposed
parameter p′ as follows

p(𝑡+1) =
{

p′, with probability 𝛼,
p(𝑡 ) , otherwise,

where p′ is generated from either the MH or HMC proposal and
𝛼 is the corresponding update probability. We invite the reader to
pursue [4] for a thorough discussion of MCMC methods.
Prior Distributions. To finalise the algorithm we must also de-
cide on a prior distribution P(p). This provides some flexibility of
the method to incorporate our knowledge about the measurement
system. In the RFD case, for example, we know that our Beacons do
not dampen routes (see § 4). If there is no background knowledge a
uniform (uninformative) distribution should be used.

The prior will dominate in cases where we do not have enough
data about the parameter. We tested a variety of standard priors
(e.g., the uniform and 𝛽 distributions) and found that there is suffi-
cient data in the BGP setting for most ASs, so the choice of prior
does not strongly influence the results. But a good choice of prior
does make quantifying the uncertainty of inferences easier.

BeCAUSe generates samples from our distribution of interest
using only a likelihood model, path measurements and the prior.
There is no requirement of ground truth for ‘training.’ Techniques
that require training are impractical herewhere there is little ground
truth data.

The level of certainty about the inferences are implicit in the
distributions and allows for informed decision making based on
the desired application. The samples from P(p|𝐷) can be used in
many different ways. In § 5, we highlight how they can be used to
identify RFD-enabled ASs, and in § 7, we confirm its validity for
RPKI Route Origin Validation (ROV).

4 RFD MEASUREMENT INFRASTRUCTURE
Controlled, active experiments have improved accuracy for net-
work tomography problems [1, 19, 32, 37, 40] as they leverage
well-defined input signals (e.g., oscillating prefixes) to provoke ob-
servable events (e.g., in BGP dumps). Using passive monitoring of
uncontrolled BGP events from route announcement feeds to infer

t0 t1 t2 t3 t4 t5 t6 t7

Time

RFD

non-RFD

Beacon

r-delta

Burst Break

r-delta

Burst Break

Figure 5: Beacon pattern and RFD signature for both RFD
path and non-RFD path, and time until re-advertisement (r-
delta).

RFD deployment is not possible, because we need to know whether
updates were sent or not, in order to know whether updates were
damped.

We built an infrastructure that injects signals to stimulate route
flap damping, which then becomes visible in common BGP data
sets. We identify a clear signature for AS paths that include at least
one autonomous system deploying RFD.

4.1 Generating Oscillating Prefixes
We use two-phase BGP Beacons, which oscillate at different fre-
quencies on controlled schedules from geographically distributed
peers. We measure and analyse the resulting signals in BGP dumps
from common route collector projects while ignoring BGP update
churn created by non-RFD causes, e.g.,MRAI. Adjusting the update
intervals allows us to explore different RFD deployment configura-
tions.
Two-phase BGP Beacons. These differ from previous BGP Bea-
cons in order to cover the full RFD mechanics. Constant rate an-
nouncements and withdrawals would cause RFD ASs to constantly
dampen Beacon prefixes, hiding further information on RFD pa-
rameters. Instead, we oscillate IP prefixes for specific periods of
time, then allow RFD routers to reset the damping penalty, which
will then cause re-advertisement of the Beacon prefixes. Therefore,
the Beacons have two phases, the Beacon pattern:

Burst: a sequence of alternating announcements and with-
drawals starting with a withdrawal and ending with an an-
nouncement.

Break: BGP announcements and withdrawals are paused.

When receiving Beacon announcements at vantage points, we need
to identify which Beacon event caused this announcement. Similar
to the RIPE Beacons [34], we encode the sending timestamps of our
RFD Beacons in the transitive BGP aggregator attribute.
The RFD signature. Our Beacons are carefully designed to create
a specific RFD penalty behavior resulting in a recognizable BGP
update signature if RFD has occurred anywhere on the path between
the Beacon router and the vantage point. Figure 5 shows the Beacon
pattern and the observed signature; first the announcements are
damped away (𝑡1 – 𝑡2 and 𝑡5 – 𝑡6), thereafter a quite delayed re-
announcement follows after the Reuse Threshold is reached (𝑡3
and 𝑡7). The latter is released, because the last BGP update was
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an announcement during the Burst. In Section 4.2, we use this
signature to decide whether an RFD-enabled AS exists on a path.
Preventing interference because of MRAI. Minimum Route
Advertisement Interval (MRAI) [31] is another mechanism that
limits oscillating BGP updates. As MRAI induces a signal very
different from RFD—delaying updates at most n seconds, where n is
a configurable constant—it does not interfere with our recognition
of the RFD signature.

4.2 Path Labeling
We search for our RFD signature in passively collected BGP update
dumps of public route collector projects for each Beacon prefix and
label each path individually. Paths are cleaned by removing AS path
prepending and paths with loops were not present in our dataset.
For our temporal analysis of the signals we need to consider that any
BGP update will arrive at the vantage point only after a propagation
delay of the BGP message. To identify the re-advertisement (i.e., the
delayed resending of the last announcement from the preceding
the Burst phase), we argue that the time delta between the final
update from the Burst and the re-advertisement during the Break,
r-delta, must exceed the normal propagation time of the respective
prefix at this vantage point.

To define the minimum propagation time for a re-advertisement
(minimum r-delta), both the normal propagation delay for our Bea-
cons and common MRAI configurations need to be considered. The
propagation delay of our anchor prefixes is at most 1 minute (see
Section 4.3). At the time of this writing, there are no studies mea-
suring the values that are used to configure MRAI on the Internet,
but there is at least one vendor defaulting MRAI to 30 seconds.
Considering Cisco RFD default parameters, a prefix is suppressed
for at least 21 minutes, for Juniper even longer. Given these distinct
timescales, we find that setting the minimum propagation time for
the re-advertisements to 5 minutes clearly separates the signals.

After analyzing all pairs of Burst-and-Break for each path, we
arrive at a set of RFD paths and a set of non-RFD paths. To cope
with unexpected infrastructure failures such as session resets, we
label paths with RFD for which at least 90% of Burst-Break pairs
match the above requirements.

4.3 Setup
Configuration. We deploy seven Beacon sets, in Europe, South
and North America, Asia, and Africa and analyze all BGP dumps
from RIPE RIS [33], RouteViews [42], and Isolario [23].3 Beacons
are a maximum of two AS hops away from a Tier 1 provider. We
verified that our upstream networks do not use RFD and therefore
do not influence our measurements.

At each of our seven Beacon sites we announced four different
/24 IP prefixes (28 in total), one anchor prefix and three IP pre-
fixes oscillating on different schedules. Beacon update intervals are
configured identically across all locations. Anchor prefixes were an-
nounced and withdrawn every two hours, the same update interval
as the RIPE Beacons, and are a control reference for propagation
behavior. To prevent filtering of the prefixes in case of route origin

3We will disclose details in the camera-ready version to allow for full reproducibility.
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Figure 6: Similarity of links on AS paths compared between
Beacon sites.

validation deployment, we configured the corresponding route ob-
ject entries in both the Internet routing registry and the RPKI for
all prefixes.

We did not expect RFD configurationsmore strict than the vendor
default values, which already suppress 14% of all prefixes [30]. A
Juniper or Cisco router would start damping a prefix that flaps at
least every 9 or 8 minutes respectively (see Appendix B for default
values). To confirm this, we configured our Beacons with an update
interval of 15, 30, and 60 minutes in August 2019. We observed
measurable RFD for the fastest Beacon prefix (15 minutes).

After preliminary tests, we conducted two measurement cam-
paigns. In March 2020, we chose 1, 2, and 3 minutes as update
intervals during Bursts of two hours, because an update interval of
2 minutes would trigger RFD with the recommended parameters
[5, 17]. We set the Break duration to 6 hours to account for very
slowly decaying RFD penalties. If a router is configured such that
the penalty does not decay during the Break, then the updates from
next Burst will increase the penalty again, causing the router to
suppress the prefix indefinitely. In April 2020, we chose 5, 10, and
15 minutes as update intervals to cope with RFD parameters that
differ more significantly from recommended values—either because
vendors ship deprecated default configurations, or manual adjust-
ment by operators. We configure the Break to 2 hours, because
the max-suppress-time is by default 1 hour and we did not observe
suppress phases longer than 1 hour in the Break in March. The
Burst length was still 2 hours.

In the following, we process each prefix per site separately, be-
cause they flap with different update intervals and thus belong to
independent experiments.
Validation. Validating the baseline characteristics of the injected
BGP announcements is crucial before analyzing the collected data
further. During this validation period, we statically announced all
prefixes.
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Figure 7: Overlap of gathered data for RFD IP prefixes.

Our Beacon prefixes were visible at 99% or more of all vantage
points that deliver a full feed (i.e., ≥ 700k IP prefixes) to the route
collectors (416 full feed peers in RIPE RIS and RouteViews). Surpris-
ingly, 1% of the announcements (270 million in total) included an
empty, invalid aggregator IP field. We could not find any specific
reason, though, we noticed that more than half of these announce-
ments were sent by AS 32097, a peer in the Isolario route collector
project. This may be caused by misconfigured or malfunctioning
routers. We discarded announcements with a missing or invalid
aggregator IP, because our analysis would become less accurate
without the encoded timestamps.

Our setup involves multiple sites with the aim to trigger RFD
at multiple locations. Figure 6 depicts the relative amount of links
(i.e., adjacent ASs) each site shares with any other site to the vantage
points. Between 70% and 95% of all AS links (4186 in total) in the
public BGP feeds can be observed using a single of our Beacon sites.
The median that a given link occurs on different paths, however,
is 11 paths (not shown). This is a significant increase compared to
using Beacons locations individually, which would lead to a median
of 3 paths. Hence, observing AS links frommultiple angles increases
the confidence in our observations.

It is important to include diverse vantage points to enhance
visibility of ASs and links. Figure 7 clearly shows that each route
collection project contributes a substantial amount of additional
data, which is the reason why we include all three data sources in
our study.

These results underscore two advantages of our setup. First,
we can observe the behavior of an AS from multiple Beacons and
vantage points, which helps pinpointing the location of RFD and
increases confidence in our observations, as will become evident
in Section 6. Second, injecting updates from additional locations
allows us to discover additional ASs and AS links.

To further validate our infrastructure we measured the propa-
gation time, i.e., the time it takes from sending the announcement
from the Beacon routers until the first announcement of each router
reaches the vantage points. We compare the results with the propa-
gation behavior of RIPE BGP Beacons [34] in Figure 8. Both Beacon
sets show the same characteristics. It is worth noting that the prop-
agation delay depends on the collector project in use (not shown).
Some vantage points in the RouteViews project export updates
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Figure 8: Comparison of propagation times between RIPE
Beacons and RFD anchor prefixes across all vantage points.

exactly 50 seconds after our Beacon routers sent the BGP updates.
In contrast to this, vantage points in Isolario export updates for all
but two Beacons within 30 seconds, whereas RIPE vantage points
show a much more diverse behavior.

5 IDENTIFYING RFD-ENABLED ASs
We presented a method to trigger and determine RFD paths. Now,
we pinpoint RFD deployment of specific ASs. Our Bayesian ap-
proach (§ 5.1) does not make any assumptions based on RFD me-
chanics, in contrast to heuristics (§ 5.2) that we use for comparison.

5.1 Bayesian Inferences
The output of BeCAUSe are many samples of p: an 𝑁 dimensional
distribution across ASs. As we are interested in making decisions
about each of the parameters individually, which tells us which
AS may be showing RFD, we look at the marginal distributions of
each 𝑝𝑖 (i.e., the distribution of each of the parameter separately).
To identify RFD-enabled ASs using BeCAUSe we must establish
distributions that are indicative of RFD.

5.1.1 Explanation of AlgorithmOutput. In contrast to many classifi-
cation algorithms, the output of this method are diagnostic pictures
(distributions) for each AS about its behavior. Here, we highlight
the diagnostic ability of these distributions, and describe a basic
summarisation and classification process to provide automatic in-
sights.

Figure 9 depicts the marginal distributions of 4 ASs that are
indicative of behaviors of interest.

(a) The distribution is heavily skewedwithmostmass at 1. There
is very little spread suggesting there is strong evidence the
AS is damping.

(b) The distribution is heavily skewedwithmostmass at 0. There
is almost no spread suggesting there is strong evidence that
the AS is not damping.

(c) Mass centred around mean 0.1 with comparatively higher
spread suggests contradictory information about RFD, i.e., some
paths that damp and others that don’t. In fact, AS 701 damps
inconsistently.

(d) The distribution we see here is the 𝛽 prior distribution. As
it persisted, it is likely that we did not see any meaningful
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Figure 9: Example output probability distributions of RFD demonstrating their diagnostic ability to detect RFD and quantify
the uncertainty in the inference.

data about this AS. Interestingly, this AS is on damped paths;
nevertheless, there is already another AS on these paths that
is likely to damp, so we cannot extract any information about
this AS.

5.1.2 Summarising the distributions. Inferring the distributions of
each AS gives us flexibility in identifying ASs that are implementing
RFD. There are several methods, ranging from simple to complex
that we could use. The distributions could be summarised by taking
the average (or some other point estimate) of the distribution as
a metric. A threshold could then be used on these to determine
RFD-enabled ASs. We can also preserve some of the information
regarding the shape or spread of the distributions to use the implicit
level of certainty in our decisions.Wewill focus here on one possible
way of summarising the distributions with two metrics to measure
the expected value and the certainty and use these to categorise
the ASs and identify RFD.
Summary metrics. We generate 2 summaries of the distribution
for AS from each method:

• Themean of the distribution; and
• The Highest Posterior Density Interval (HDPI)

The first is just the average 𝑝𝑖 of the distribution, 𝑃 (𝑝𝑖 |𝐷), and
gives an estimate of the expected value for this AS. HDPI finds
the smallest interval that contains 𝛾 = 0.95 of the mass. Otherwise
know as the smallest Bayesian credible interval, it is the interval
[𝐴, 𝐵] where 𝛾 of the mass falls between 𝐴 and 𝐵 such that 𝐵 −𝐴
is minimised. The width of the HDPI measures the (asymmetric)
spread of the distribution and gives an idea of the uncertainty in
our mean estimate.
1) Categorising. The objective of the algorithm is to allow a user to
gain a specific level of certainty depending on the application. The
metrics provide us with valuable information, but for the purpose
of this work we must translate these metrics into a ’decision’. We
maintain some of the information about certainty by mapping
results to a category from 1 to 5, where 1 and 2 are highly likely
and likely not damping and 4 and 5 are likely and highly likely
damping. Category 3 is uncertain, either because of contradictory

Table 1: Categories based on distribution summaries. ‘Else’
indicates the flag if no other category is assigned. The high-
est category is chosen for each AS.

Average: 𝑝𝑖 HDPI: [𝐴𝑖 , 𝐵𝑖 ]
Category 1 𝑝𝑖 ∈ [0, 0.15) 𝐴𝑖 ∈ [0, 0.15)
Category 2 𝑝𝑖 ∈ [0.15, 0.3) 𝐴𝑖 ∈ [0.15, 0.3)
Category 3 𝑝𝑖 ∈ [0.3, 0.7) else
Category 4 𝑝𝑖 ∈ [0.7, 0.85) 𝐵𝑖 ∈ [0.7, 0.85)
Category 5 𝑝𝑖 ∈ [0.85, 1] 𝐵𝑖 ∈ [0.85, 1]

data, or, most often, due to lack of specific data about this AS. Note
that not enough data does not necessarily mean the AS is not on
many paths. Nodes that are regularly on paths with other damping
ASs do not display any specific information. Categorisation based
on the summaries are given in Table 1.

The cut-off values are chosen to automatically implement the
insights from the output distributions in Figure 9, and we provide
data driven justification in § 6.1. After summarising and categoris-
ing both the MH and HMC distributions by mean and HDPI, we
use the highest flag.
2) Identifying ASs that use RFD inconsistently. It is evident
from the data and marginal posterior distributions that some AS
use RFD inconsistently. For example, AS 701 damps all neighbours
except AS 2497. The distribution of 𝑝701 in 9(c) highlighted con-
tradictory data. After categorising based on the thresholds above,
we utilise the marginal distributions to determine ASs that damp
inconsistently.

Recall, that if the path displays RFD then there is at least one AS
on the path that damps. Therefore, there should be at least one path
on each RFD path that is labelled in Category 4 or 5. If the path
does not contain an inferred RFD AS, we use the posterior marginal
distributions to determine the AS that is most likely causing RFD.
Specifically, for each AS X on the path we determine the posterior
probability that AS X is the most likely to be causing RFD on the
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Figure 10: Typical distribution of announcements during a
Burst-Break pair for anRFDAS (top) and a non-RFDAS (bot-
tom), with the linear regression function (blue) of histogram
heights.

path. If
P(min(𝑝𝑖 for 𝑖 ∈ 𝐽 ) = 𝑋 ) > 0.8, (8)

then there is sufficient evidence that X is the damping AS on path 𝐽 .
For each damping path 𝐽 in the data, if there is an AS that is most
likely damping we label this AS as a Category 4.

In general, the summarisation, cut-off, and flagging methods
can be tailored depending on the desired confidence level of the
outcomes. We accept Category 4 and 5 to be an RFD-enabled AS;
however, if higher certainty is required, we could use only Category
5 ASs or change the thresholds appropriately.

5.2 Passive Measurement Heuristics
An alternative to Bayesian Inference for identifying ASs that deploy
RFD is to rely on heuristics. We now present 3 metrics toward that
aim. For each AS we take the average of the metrics as the final
output. These will be used for comparison purposes to highlight
the power and simplicity of BeCAUSe. We will see that heuristics
are less precise and need tuning that is absent from the Bayesian ap-
proach. Additionally, the heuristics would become very inaccurate
if RFD was deployed in the majority of networks.

5.2.1 RFD Path Ratio. This heuristic quantifies the relative occur-
rences of an AS on a path showing the RFD signal compared to the
total number of paths this AS appears on. We calculate for each AS:

𝑀1 (AS) =
#RFD paths (AS)

#RFD paths(𝐴𝑆) + #non-RFD paths(𝐴𝑆)
This metric is robust for richly connected ASs, i.e., Tier 1 provider

and transit networks. Stub ASs tend to be biased towards the RFD
configuration of their upstream provider(s). False positives will
occur for ASs, which only have one upstream with RFD enabled.

5.2.2 Inferring RFD ASs Based on Alternative Paths. This metric
is motivated by two observations. (i) damped prefixes will reveal
alternative paths between a Beacon prefix and a vantage point
because of path hunting. (ii) An AS that actively damps prefixes
will not be part of an alternative path.
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Figure 11: Scatter plot of the mean of the marginal posterior
distribution for each AS (x-axis) with cut-offs (Table 1) in
grey, and a measure of certainty about the estimate (y-axis)
for the 1 min update interval. ASs are colored based on the
assigned category.

For each damped path, we determine a set of alternative paths
between the Beacon and the vantage point. We expect that alter-
native paths are used more frequently after the original path has
been damped. Then, for each AS we determine the average share
of alternative paths without the AS across all damped paths.

5.2.3 Announcement Distribution across Bursts. This metric is mo-
tivated by the observation that a damping AS sends fewer BGP
updates near the end of a Burst compared to non-damping ASs.
Figure 10 visualizes an average case of an RFD AS compared to a
non-RFD AS. The blue and white areas, separated by a vertical red
line, indicate the Burst and Break phases respectively. Both plots
show a histogram of received announcements grouped in 40 time
intervals. The blue line displays the linear regression function of the
histogram heights during the Burst. Based on the slope and relative
change of this linear regression function, we map this behavior to
a score between 0.0 and 1.0.

6 RESULTS
6.1 Pinpointing RFD ASs with BeCAUSe
Figure 11 highlights the output of BeCAUSe and detailed category
shares are shown in Table 2. The scatterplot depicts two summary
metrics of the output distributions to plot the average probability of
damping against the certainty of this estimate. We use one minus
the length of the HDPI to quantify certainty, so more confident
estimates are closer to 1. The x-axis is a measure of how likely
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Table 2: Total and share of assigned categories for the 1
minute update interval.

Category 1 2 3 4 5

Total 166 283 72 25 28
Share 28.9% 49.3% 12.5% 4.3% 4.8%

an AS uses RFD, and the y-axis is a measure of the spread—how
sure we are of our x-axis estimate. The ASs are colored by category
determined by the process introduced in Section 5.1. There is a
characteristic U shape. On the right we have ASs that are likely
using RFD as shown by the high average 𝑝𝑖 . ASs in the top right
are on a large number of RFD paths and so have a high certainty,
e.g., AS 20932 in Figure 9(a). For ASs where there is less data (but
not contradictory), we see our confidence decrease but the average
𝑝𝑖 still suggests RFD. Conversely, on the top left we have ASs that
are on many non-RFD paths, e.g., AS 2497 in Figure 9(b). For ASs
that are on less paths we have less information, but the average
remains high as we see in the Category 1 and 2 ASs (blue and
green). The base with low evidence suggests ASs for which we
have little information, and we recover the prior with high spread,
e.g., AS 12874 in Figure 9(d).

The ASs in Category 4 that are spread across the plot are quite
interesting. Such cases suggest we have contradictory information
about these ASs—probably due to inconsistent damping. For exam-
ple, recall the distribution of AS 701 in Figure 9(c) that has a low
probability of damping, because on the majority of labeled paths it
receives updates from AS 2497, which is a neighbor that is not being
damped. Despite the low mean probability, our pinpointing method
has identified this AS, and others, as RFD as they are the most likely
ASs to be causing RFD on some damped paths as described in § 5.1.
Figure 11 shows grey vertical lines at 𝑝 = 0.3 and 𝑝 = 0.7. These
are the category cut-offs from § 5.1, chosen to segment the region
into the three distinct different regions over the different update
intervals.

Our results suggest that 9.1% (sum of Category 4 and 5) is the
lower bound of RFD deployment. There a three reasons why we
may have labeled a damping AS as non-damping. First, an AS
damping solely customers is not detectable with our setup because
our Beacons are located in or close to Tier-1 providers and thus
the Beacon signals travel only from a provider to a customer or
between peers in the Internet topology. This is confirmed by the
observation that less than 3% of links on the measured paths are
customer links. Second, an update interval of 1 minute may not
be small enough to trigger some configurations. Third, a damping
ASs may be hiding behind another damping AS, so our updates
are already being suppressed before they can reach this AS. This
last issue would be much more significant if RFD deployment was
larger. With the above challenges and visibility issues, it is, with
our measurement setup, impossible to establish an upper bound for
RFD deployment.

6.2 Deployed RFD Parameters
RFD is configurable in various ways. To target different configu-
rations, we used 6 different update intervals. Figure 12 visualizes
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Figure 12: Share of damping ASs from total (534) for each
update interval. Only ASsmeasured in all 6 experiments are
counted.

the share of ASs using RFD for a given update interval. The orange
bars indicate the share of RFD-enabled ASs for which we have non-
contradicting data, i.e., damping all neighbors consistently. These
ASs have been labeled using only the probability of damping (step
(1) in § 5.1). The blue bars include inconsistently damping ASs that
were labeled with step (2). We observe an unexpected spike at 2
minutes as a single AS with a large customer cone damps inconsis-
tently.

While Figure 12 illustrates how quickly a prefix needs to flap
to get damped, we cannot infer the exact value of the suppress-
threshold in use because one Beacon event may cause multiple up-
dates distant in topology (e.g., path hunting). We assume, however,
that many operators use predefined configurations, and try to find
confirmation in our data. Currently, there are two sources of param-
eter sets: (i) the recommendations by the IETF and RIPE [5, 17], and
(ii) vendors that ignore these recommendations and pre-configure a
deprecated suppress-threshold (see Appendix B). The largest fraction
of ASs stop dampening for update intervals larger than 5 minutes
(Figure 12). A router with deprecated default values would start
damping at the 5 minutes update interval. We suspect the continu-
ous increase of RFD ASs for the smaller update intervals is caused
by some network operators following the current recommendations.
The very few damping ASs at 10 or 15 minutes are likely induced
by updates amplified by topology properties. Based on feedback
from almost 50 network operators we were able to confirm that
there is a significant tendency (≈60%) to use vendor default values.

To expose the announcement pattern of damped paths we ana-
lyzed the max-suppress-time values that are used in practise. Fig-
ure 13 visualizes the distribution of the mean time delta between
the end of the Burst and the re-advertisement across all damped
paths for the entire measurement period. First, we notice that the
time until re-advertisement (r-delta) rarely surpasses 60 minutes,
suggesting a large max-suppress-time is uncommon. For the small-
est update interval (1 minute) we find three plateaus, starting at 10,
30, and 60 minutes, indicating that these are the most commonly
configured values for the max-suppress-time parameter. The same
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Figure 13: CDF of re-advertisement delta in the Break for
each damped path. Only the 1 minute update interval is
small enough to unveil themax-suppress-times (red lines).

pattern cannot be observed for the slightly larger 3 minute up-
date interval and even less for 5, 10, and 15 minutes (not shown).
For these larger update intervals, the penalty decreases naturally
faster below the reuse-threshold and before the max-suppress-time
expires.

6.3 Comparison to Operator Ground Truth
Pinpointing RFD ASs on paths that include only a vantage point
and our Beacon AS is not challenging. Limiting ourselves to these
scenarios (≈ 3%) would, however, significantly reduce the amount of
ASs we can draw a conclusion about. BeCAUSe allows us to include
paths of arbitrary length giving much wider coverage. To validate
our findings we directly contacted network operators of every
measured AS and received 75 replies in total. Unfortunately, we
cannot map the provided configurations to exact update intervals
from our experiment (1, 2, 3, 5, 10, 15 min) because effects such as
path hunting increase the number of updates along the path, and
make our results less sharp. Therefore, we chose to compare our
results for the smallest update interval (1 minute) to ground truth.
Overall, BeCAUSe performs very well on this small dataset with
100% precision compared to the heuristics, which have one false
positive. The recall is 87% (80% for the heuristics) mainly due to
visibility issues. We summarize the main reasons of divergence in
Table 3. We removed two ASs, namely AS 8218 and AS 7575, from
the ground truth dataset, as they are not detectable with our current

measurement setup, hence it is not possible for the pinpointing
methods to locate these ASs.

The MCMC methods perform better than the heuristics regard-
ing precision, although the heuristics already yield 97% precession
(see Table 4). In some challenging cases, the heuristics will incor-
rectly label ASs with RFD True, when they are on many RFD paths
but are not causing them. This is the case for AS 5645, for example.
BeCAUSe considers the entire path data in the likelihood and so
accounts for this but only flags the upstream AS and identifies that
there is no information about these downstream ASs. However,
in these cases when evidence from the labelled paths is lacking
BeCAUSe labels the AS as unsure (e.g., AS 37474), while two of the
metrics for the heuristics use additional data from the raw update
dumps to identify these nodes. The MCMC algorithm flags incon-
sistently damping ASs, which cannot be found by the heuristics,
by identifying ASs that are most likely to be causing the damping
signal (recall § 5.1).

As network tomography problems assume nodes act consistently,
the most challenging scenario is the deployment of heterogeneous
RFD configurations, e.g., an AS damps only customers. We could
instead pinpoint individual AS links, but, unfortunately, when con-
sidering links, our data is too sparse to gain reasonable results from
BeCAUSe or the heuristics.

Although the overall results of BeCAUSE appear to be on par
with our heuristics, it is important to note that the heuristics are tai-
lored to a specific pinpointing use case. In contrast to this, BeCAUSe
is generic, which we will show in the next section.

7 APPLYING BeCAUSe BEYOND RFD
The BeCAUSe algorithm uses a simple likelihood model and does
not require domain knowledge, e.g., RFD. In this section, we present
the effective application of the same algorithm to locate a different
AS property, route origin filtering, and briefly discuss general usage.

7.1 Pinpointing ROV ASs with BeCAUSe
We are interested in locating ASs that drop invalid routes (i.e., those
IP prefixes that are announced from incorrect origin ASs) using
RPKI route origin validation (ROV) [26]. In this section we first
simulate the output of an ROV measurement using real-world AS
paths and a set of ASs known to use ROV. Then, we benchmark
BeCAUSe using this dataset. Therefore, this experiment does not
uncover new ROV ASs, but simply benchmarks BeCAUSe in a
different plausible use case.

Table 3: Overview of reasons of divergence between methods to pinpoint that an AS deploys (✓) or does not deploy (✘) RFD,
compared to operator feedback.

Pinpointing Method

# Cases Example AS Ground Truth BeCAUSe Heuristics Reason for Divergence

56 IIJ (AS 2497) ✘ ✘ ✘ -
10 Atom86 (AS 8455) ✓ ✓ ✓ -
3 Verizon (AS 701) ✓ ✓ ✘ Heterogeneous configuration
2 JINX (AS 37474) ✓ ✘ ✓ Upstream uses RFD
2 TekSavvy (AS 5645) ✘ ✘ ✓ Upstream uses RFD
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Table 4: Summary of algorithm performance on ground
truth. Overall, BeCAUSe and the heuristics perform well on
locating RFD ground truth. BeCAUSe generalises to locate
Route Origin Validation (§ 7).

BeCAUSe Heuristics

Precision Recall Precision Recall

RFD 100% 87% 97% 80%
ROV 100% 64% n/a n/a

To label AS paths as ROV (or non-ROV ) we make use of existing
data sources that accurately pinpoint ROV ASs, either based on
strictly controlled experiments [32] or ground truth [11]. From Iso-
lario, RouteViews, and RIPE RIS we collect all AS paths of two RPKI
Beacon prefixes (147.28.241.0/24 and 147.28.249.0/24 [32]),
and label the AS paths ROV (or non-ROV) if one of the ROV ASs is
on path (or non-ROV otherwise).

While it is possible to change parts of our pinpointing algorithm,
we use the same implementation to locate ROV as in locating RFD
ASs. There are two key differences in contrast to the RFD dataset:
(i) 90% of paths are labeled ROV (versus 18% for RFD) and (ii) noise
is absent.

BeCAUSe has good performance on this dataset and leads to
100% precision and 64% recall (see Table 4). The ASs that were
missed are only seen on paths with another ROV filtering AS. For
these ASs it is impossible to infer ROV usage, because they are
‘hiding’ behind another ROVAS. This is a common issue in network
tomography, unrelated to BeCAUSe, where two nodes only ever
appearing together on ROV paths are unable to untangle which (or
both) are displaying our property of interest.

7.2 Towards Other Scenarios
There are many options to extend BeCAUSe, within binary tomog-
raphy or even more generally. The algorithm itself remains the
same; however, we can use different models and summarisation
techniques should our application or research question change. One
useful extension is to include error explicitly in the likelihoodmodel
𝑃 (𝐷 |p). For example, using our measurement method for RFD, it is
possible that paths containing an RFD AS do not get recorded as
RFD paths. We can model this error in the likelihood. Using a new
likelihood model can enable the application of this method to net-
work tomography problems beyond the binary problem introduced
here.

8 RELATEDWORK
Network Tomography: A good survey of the early work on net-
work tomography is provided in [8]. Early approaches aimed at
inferring the origins of performance events using highly correlated
multicast [6, 15] or striped unicast packets [12, 16]. The ideas were
extended to summary statistics using alternative measurements,
e.g., passive measurement [29], however early work concentrated
on additive metrics, where the relationships between internal net-
work properties could be expressed as linear relationships leading

to deterministic algorithms even where the underlying model was
stochastic.

Very little work in this large literature considers MCMC ap-
proaches. The only approach that has been trialled is Gibb’s sam-
pling, e.g., [14, 29] a special case of Metropolis Hastings. Both
[14, 29] applied the additional condition of sparsity, i.e., that the
network measurements should be explained by larger loss at a few
places, rather than small losses spread across the network. Both
[14, 29] only considered trees in detail (on trees the sparsity has the
nominally beneficial impact of forcing loss higher in the tree, aiding
in the diagnosis problem). In our setting, sparsity is not always true
(see AS origin validation) and we measure across general graphs
not just trees. It is worth noting that piecing together trees would
be a non-trivial component of the prior work, so a comparison
would not actually be against the prior approaches, and thus is out
of scope in this work.
Binary (or Boolean) Network Tomography aims to classify
links as “good” or “bad,” a simpler and more practical inference in
some cases [2, 3, 14, 28, 29]. More recently binary tomography was
applied to general networks to find censoring ASs by formulating
the problem using logical constraints as SAT [10]. This approach
has advantages: it can use the large body of work on solving SAT,
but it should be noted that the SAT problem so created can (i) have
many solutions, requiring some means to choose one, or (ii) can
have zero solutions in the case of measurement noise. Our approach
aims for a middle ground between earlier probabilistic approaches
with the large body of assumptions and limitations they brought,
and the more practical binary tomography. We aim to ascertain
if an AS has a particular property (though unlike typical binary
tomography having a property is not intrinsically bad or rare).
However, concomitant with that inference, we desire to allow for
the possibility of partial properties, and to provide a measure of
uncertainty of the inference. Binary tomography, by itself does not
typically allow such.

We did not compare to binary approaches as they cannot derive
meaningful results in scenarios of inconsistent deployment. SAT
would lead to zero valid solutions, based on our data. AS 701 is one
concrete example in the current Internet, which damps routes on
some paths and does not on others (see § 5.1).

Despite some limitations practical network tomography instan-
tiations have been built [20, 39] showing that methods such as that
proposed here can be scaled to create useful systems for networks
as a whole.
Heuristic Approaches: There have also been multiple studies
which attempted to pinpoint another behavior—the origin a routing
changes—using heuristics [7, 18]. These are tenuously related to
this work in the nature of the task being attempted. Closer is a
prototype [9], that tries to find the reason for a missing route.
However, their approach does not investigate the exact reasons for
the unreachability (they state that misconfigured RFD was one of
the possible explanations). Closer still is [27], which considers the
general problem of inferring AS properties. Other papers also aimed
at this, but most have presumed an atomic model of ASs, i.e., that
each AS has a deterministic behavior. A major difference between
our work and these is that we perform controlled experiments using
Beacons, rather than relying on natural churn.
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Locating ASs that deploy route filtering based on RPKI attracted
recently attention. Gilad et al. [21] locate route divergences between
invalid and valid prefix announcements and infer RPKI deployment
based on that. Testart et al. [41] presented another heuristic assum-
ing that vantage points which provide a full feed export less invalid
announcements if they deploy filtering. Both approaches imple-
ment uncontrolled experiments and thus are prone to false positives,
e.g., because of traffic engineering and incorrectly configured RPKI
data. Reuter et al. [32] introduced controlled, active experiments to
precisely pinpoint ASs that deploy RPKI filtering. This, however,
requires a strict measurement setup, i.e., direct peering between
the experiment AS and vantage point.

9 CONCLUSION AND OUTLOOK
We presented BeCAUSe, an algorithmic framework to infer network
properties. In contrast to heuristic methods, which are commonly
applied to tackle this challenge, our proposal does neither make
restrictions on the topology setup nor does it require specific par-
ticipation of the network elements under investigation, except their
usual packet forwarding. The underlying features are two Bayesian
computation techniques, which allow for rigorous network tomog-
raphy.

We demonstrated BeCAUSe to pinpoint autonomous systems
that deploy route flap damping and route origin validation. To
the best of our knowledge, route flap damping was not measured
before on global scale. We uncovered that at least 9% measured
ASs use RFD, of which ≈ 60% rely on deprecated, harmful ven-
dor default configurations. We compared BeCAUSE with different
heuristics, which exhibit less precission and recall. Most impor-
tantly, in contrast to heuristics, BeCAUSe is not designed for a
specific pinpointing use case but a generic framework. BeCAUSe
can help researchers also measuring deployment of RPKI-based
filtering as we showed. Tracking down censorship or other similar
topics might be application scenarios in the future.

We believe that a better understanding of operational practices
can improve the Internet in the long term. We presented our results
to the operators at RIPE 80 to raise awareness about the surprising
usage of deprecated RFD parameters. Analyzing changes will be
part of our future work.

With the data set that we provide, verified by ground truth,
we hope to stimulate further discussions on the implications of
suppressed routes on Internet measurements.
A Note on Reproducibility. We explicitly support reproducible
research. All artifacts are available on https://rfd.rg.net.
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A ETHICS
When performing active BGP measurements one needs to avoid
impacting real-world operations. As we are sending many BGP Up-
dates, especially when high update burst rates are active, we need
to make sure that our Beacons do not overwhelm other routers.
In the first measurement period, we caused 0.48% of all IPv4 con-
trol plane traffic seen in RIPE RIS, RouteViews, and Isolario data,
whereas in the second period our Beacon caused 0.54% of all IPv4
BGP updates. Interestingly, the prefixes oscillating every minute
were still causing a lot fewer updates than other prefixes on the
Internet. As an example, we picked March 1th and measured how
many announcements belonged to each prefix. We found ≈ 50 pre-
fixes causing 3 times as many updates as one of our Beacon prefixes
and 4 prefixes caused 17 times more updates individually than one
of our Beacon prefixes.

B RFD DEFAULT PARAMETERS

RFD parameter Cisco Juniper RFC 7454

Withdrawal penalty 1000 1000 1000
Readvertisement penalty 0 1000 0/1000
Attributes change penalty 500 500 500
Suppress-threshold 2000 3000 6000
Half-life (min) 15 15 15
Reuse-threshold 750 750 750
Max suppress time (min) 60 60 60
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