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ABSTRACT
The Border Gateway Protocol (BGP) coordinates the connectivity
and reachability among Autonomous Systems, providing efficient
operation of the global Internet. Historically, BGP anomalies have
disrupted network connections on a global scale, i.e., detecting them
is of great importance. Today, Machine Learning (ML) methods have
improved BGP anomaly detection using volume and path features
of BGP’s update messages, which are often noisy and bursty. In
this work, we identified different graph features to detect BGP
anomalies, which are arguablymore robust than traditional features.
We evaluate such features through an extensive comparison of
different ML algorithms, i.e., Naive Bayes classifier (NB), Decision
Trees (DT), Random Forests (RF), Support Vector Machines (SVM),
and Multi-Layer Perceptron (MLP), to specifically detect BGP path
leaks. We show that SVM offers a good trade-off between precision
and recall. Finally, we provide insights into the graph features’
characteristics during the anomalous and non-anomalous interval
and provide an interpretation of the ML classifier results.

CCS CONCEPTS
• Security and privacy → Network security; • Computing
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1 INTRODUCTION
The Internet is composed of thousands of administrative domains
known as Autonomous Systems (ASes), where the reachability of
IP address space is exchanged using the Border Gateway Protocol
(BGP). Given today’s global BGP use and uncertainty of ASes’ prop-
agated information, any misconfiguration or malfunction of the
protocol can compromise the Internet’s stability.

Regardless of the intent behind these anomalies, whether they
are malicious, such as worms or targeted attacks, misconfiguration,
or link failures, there has been growing interest in detecting and
mitigating BGP anomalies by observing BGP traffic [33], without
depending on large-scale deployment solutions such as RPKI [9].

BGP anomaly detection has evolved from techniques such as
time-series analysis to Machine Learning (ML) approaches as the
latter deemed to improve detection and identify a wider range of
BGP anomalies, e.g., misconfiguration, blackout, and worms [4].
In previous works, the primary features used are message volume
and AS-PATH attributes extracted from BGP’s update messages.
When analyzing BGP anomalies over time, certain characteristics
of the data may have changed, e.g., in terms of volume, which
need to be considered when analyzing anomalies using historical
data. Therefore we explore anomaly detection using graph features,
which are more robust and appropriate for capturing the dynamics
in the network topology. Graph features are primarily based on
node centrality [30], clique (graph theory) [3], clustering coefficient
[32], and hop count measures such as eccentricity [19].

In this paper, we provide a rigorous evaluation of the aforemen-
tioned graph features through an extensive comparison of different
ML algorithms used in BGP anomaly detection, i.e., Naive Bayes
classifier (NB) [5], Decision Trees (DT) [24], Random Forests (RF),
Support Vector Machines (SVM) [13], and Neural Networks (NN)
[10], that use graph features to detect BGP path leaks. Our results
indicate that these algorithms are able to detect anomalies, which
demonstrate that graph features do not depend on any ML method
to show their strength as data input predictors. In our observations,
MLP achieved the highest accuracy. Given that SVM is only outper-
formed by 0.3% on average, and it is more robust in discriminating
anomalous and non-anomalous instants, we conclude that our best
classifier is achieved using SVM.

The paper is structured as follows: Section 2 briefly discusses the
related work and the graph features used in this study. Section 3 and
4 present the methodology and the assestment results of different
ML algorithms. Finally, the concluding remarks are presented in
Section 5.

https://doi.org/10.1145/3359992.3366640
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2 BACKGROUND AND RELATEDWORK
We briefly discuss here the most relevant related work on BGP
anomaly detection, the current ML-based detection strategies, and
the features used in our analysis.

2.1 Related Work
BGP anomaly detection looks for inconsistencies in the origin
of prefixes announced by ASes or unexpected path changes. These
are classified by the type of data used for detection: (i) control-
plane, (ii) data-plane, and (iii) hybrid approaches [4]. Control-plane
methods are usually third-party services such as BGPmon [1] or
BGPStream [2], which have been effective in detecting large-scale
events. On the other hand, ARTEMIS [33], a self-operated detection
system, exploits local configuration and real-time BGP data from
public monitoring services such as the RIPE Routing Information
Service (RIS)1. It also provides protection against different types of
attacks, including timely response against monkey-in-the-middle
traffic manipulation. All previously mentioned methods are reac-
tive and notify routing anomalies after they occurred. Data-plane
approaches use network tools such as ping and/or traceroute to
detect anomalies in the forwarding of packets. These approaches
rely on monitoring the reachability of prefixes of the victim to de-
tect anomalies [4]. Hybrid approaches have been investigated to
address the limitations of exclusively control or data-plane methods.
The main idea is to use control-plane inconsistencies to inform data-
plane measurements, i.e., by exploring the reachability of targets
in a particular network [4].

Further, graph features are well studied in BGP literature. For
instance, node centrality has identified key ASes in a countrywide
study in [38]. It is also used in [18] to identify abnormal routing
changes from BGP data. Similarly, monitoring geometric curvature
of AS-level topology is proposed in [31]. Large variations of curva-
ture could potentially be used to detect BGP events. Though graph
features are already explored for different applications, to the best
of our knowledge, this paper first explores them as inputs to ML to
detect anomalies in BGP.

2.2 ML-based BGP Anomaly Detection
Early large-scale BGP anomalies are mostly due to worm attacks,
hence being the focus of literature. A complete history of BGP
anomaly detection schemes can be found in [4, 34].

Numerous studies [5, 6, 8, 10–12, 14–17, 21, 23, 24, 29] have
adopted ML to increase the accuracy of BGP anomaly detection.
Here, we discuss briefly the recent works for SVM and NN.

SVM have been proven to work well with worm detection in
BGP (e.g., [8, 14, 16]). More recently, Dai et al. [13] proposed SVM-
based BGP Anomaly Detection (SVM-BGPAD) using different SVM
kernels and Fisher algorithm for feature selection. They achieved a
maximum of 91.36% accuracy in detecting worms using RBF kernel.

Recent contributions use deep learning for anomaly detection.
Cheng et al. [10] propose Multi-scale LSTM that utilizes Discrete
Wavelet Transform to include the temporal information. They eval-
uated their ML algorithms on the worm attacks plus a single path
leak (i.e., TTNet table leak). On the other hand, Cosovic et al. [11]
1RIPE RIS is a well-known repository for BGP datasets open for the research commu-
nity: https://www.ripe.net.

uses a simple Multi-layer Perceptron (MLP) but generalizes by tak-
ing into account different types of anomalies such as worms, table
leaks, and blackout. However, rather than accuracy, the effects of
under- and oversampling are the focus of this study.

The current ML-based works focus on worm attacks (i.e., [5,
6, 10, 12, 16, 17]), while only a few (cf. [11, 14]) have studied the
combination of worm attacks, blackouts, and table leaks. Thus,
there is a literature gap for detection schemes with recent attacks
such as route leaks, which our study aims to fill. Moreover, previous
works use traditional BGP volume and AS-PATH features, which
may not work given that these features are found to be noisy and
bursty [10]. In this study, more robust features such as topological
features are proposed and tested on current attacks.

2.3 AS-Level Graph Features
Here, we present the features that we consider in this work. They
are derived from the AS topology, which include node centrality
[30], clique theory [3], clustering coefficient [32], and eccentricity
[19]. Most of these features are used in other areas such as network
robustness [30], while here we explore them for anomaly detection.
Centrality metrics reveal information about the most important
elements in a graph. They have been widely used to speed infor-
mation propagation in the network, damp epidemic virus propa-
gation, and study network stability [30]. In general, betweenness,
load, closeness, and harmonic centrality are measures of the
path length, i.e., path-length centrality, whereas degree, eigenvec-
tor and PageRank measure richness of the neighbor graph, i.e.,
neighborliness.
Clique [26] is a complete subgraph of an undirected graph, which
are often used formodelling clusters user groups, i.e., users that tend
to call each other more often. We use the number of cliques and
the size (nodes in a clique) as features to detect BGP anomalies.
Clustering coefficient [32] is the tendency of nodes in a graph to
group together. It is frequently used for analyzing graphs and was
introduced for studying social networks.
Triangles [32] are composed of three nodes and three edges, formed
in a network. They are formally known as 3-cycles, where a cycle
is defined as a closed trail.
Square clustering coefficient [22] is similar to triangles, but uses
squares, i.e. cycles composed of four connections.
Average neighbor degree [7] measures the effective affinity to
connect to high or low degree neighbors according to the actual
interaction. Average neighbor degree, when combined with the clus-
tering coefficient, better capture the effective level of cohesiveness
between nodes [7].
Eccentricity [19] measures the maximum distance from a node to
all other nodes in the graph.

3 METHODOLOGY
The main goal of this work is to assess the current status of an AS,
whether it belongs to the "anomalous" or "normal" category, i.e.,
binary classification, for a given time interval using graph features.
In this section, we describe the dataset used to train our classifiers.
We also explain our methodology, the acquisition, and derivation of
the graph features, the feature selectionmethods, theML algorithms
considered, and, finally, our evaluation metrics.

https://www.ripe.net
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(a) AS9121 (TTNet Table Leak)
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(b) AS4761 (Indosat Table Leak)

12:00 UTC
June 10

12:00 UTC
June 11

12:00 UTC
June 12

12:00 UTC
June 13

12:00 UTC
June 14

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

va
lu

e

Regular

Anomaly

centrality

class

(c) AS4788 (TM Table Leak) Set

Figure 1: An example showing eigenvector centrality graph feature during the anomaly events

Table 1: Datasets

Anomalies Anomaly Start Date
Duration

(min)
RRC

TTNet (AS 9121) Dec. 24, 2004 (9:20 UTC) 627 RRC05

IndoSat (AS 4761) April 2, 2014 (18:25 UTC) 150 RRC04

TM (AS 4788) June 12, 2015 (8:43 UTC) 182 RRC04

AWS (AS 200759) April 22, 2016 (17:10 UTC) 115 RRC04

3.1 The Datasets and the Experiment Setup
We select four well-known BGP events presented in Table 1: Turk-
ish Telecom (TTnet) [17, 28], Indosat (Indonesia) [4, 11], Telecom
Malaysia (TM) [11, 35], and the attack on Amazon Web Services
(AWS) [11, 13, 36]. In contrast to TTNet, IndoSat, and TM, AWS
was a narrowly targeted malicious incident. We chose them as they
are recent BGP events that severely affected BGP and are also used
in previous contributions [10, 11]. Furthermore, they had a large
impact on the Internet and in the sheer number of prefixes.

Our BGP data was taken from the RIPE RIS Collectors RRC04
(Geneva) and RRC05 (Vienna). These collectors are widely used for
research in BGP anomaly detection [10, 17]. We extracted the RIB
table and control messages for the days before, during, and after
the anomalies (5 days each in total). Collecting data over this time
allowed us to distinguish between normal and anomalous behavior.
We extracted 1440 samples for each event where each sample is
composed of 14 features extracted from the Internet topology that is
created every five minutes. The 5-minute interval is based on RIPE
RIS’ frequency of releasing the updates of the control messages.
We obtained a total of 5760 samples from the four events, where
only 218 out of 5760 are samples during the anomalous instant, i.e.,
our dataset is imbalanced. Thus, the classifier determines whether
the current status of an AS shows anomalous behavior or not (i.e.,
binary classification), based on the graph features extracted from a
snapshot of the Internet graph every 5-minute duration.

3.1.1 Feature Extraction. To extract the features, we recreated
the AS-level topology from the AS-PATH field of the BGP announce-
ments. Then, we extracted the graph features using networkx2 for

2Networkx details can be found at https://networkx.github.io

the whole 5-day duration, which served as input to our ML models.
An example using the proposed eigenvector centrality feature is
shown in Figure 1. It shows the feature only for the first three events
from Section 3.1 due to space constraints, together with their labels
during the regular and anomalous periods. Such periods are based
on the anomaly start date and duration from Table 1.

The figures depict the feature’s sudden change of behavior from
normal to the anomalous event. This behavior is also found in most
of the features. Interestingly, Figures 1a and 1b from TTNet and
Indosat happened 10 years apart, but have similar values.

It is important to note that we are showing in the figure the
graph features of the large-scale events which heavily affected the
network. In these events, the patterns are clear as in the figures.
However, not all attacks have this effect on the network. For in-
stance, AWS does not have the same clear patterns which are not
shown. Our goal is to show that graph features are good features
for training our ML models and rely on ML solutions to detect
more sophisticated patterns in the test sets/live deployment. ML
discovers patterns that are difficult to find which are useful for
complex data like BGP control messages.

3.1.2 Feature Selection. We based our feature selection algo-
rithms from [17], which surveyed the most common feature se-
lection algorithms used in BGP detection schemes. The methods
included the minimum Redundancy Maximum Relevance (mRMR)
family of algorithms (MR, MID, and MIQ) [27], and Fisher score
[37]. Additionally, we also used univariate methods to select fea-
tures. Univariate methods rank features by computing individual
scores irrespective of the whole feature set. Such features include
the Analysis of Variance (ANOVA), Mutual Information (MI), χ2
test, and F-value scoring functions [39]. All these methods are used
to select which subset of features are optimum.

3.1.3 GridSearchCV. The selected features were then fed into
the different ML methods considered. For each ML method, there
were different parameters that needed tuning. Finding the right set
of parameters was needed in the training phase. Thus, we utilized
sklearn’s GridSearchCV3 function to search for the optimum pa-
rameters. GridSearchCV performs the evaluation using cross-fold

3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html

https://networkx.github.io
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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validation. It divides the training set into N subsets and uses N-1
subsets to train the model while using the remaining set for valida-
tion. In this study, we used 3-fold validation, i.e., GridSearchCV’s
default value. For each feature combination selected from Section
3.1.2, GridSearchCV explores different parameters, and those that
yielded the optimal solution are chosen.

3.2 Machine Learning Algorithms
Previous work already showed that SVM [13], NB [5], DT [24],
and NN [10] provided satisfactory results in detecting anomalies
in BGP. In addition, these techniques are the most common binary
classification methods [25], which are appropriate in classifying
between anomalous and non-anomalous events. Also, we use such
simple methods, since our number of features and samples are
not extensive, i.e., 14 x 1440 instances for each attack, avoiding
complex methods such as Deep Learning. Further, we also include
RF, which is a natural extension of DT that corrects its tendency of
overfitting. Thus, we utilize these methods, comparing them to find
which best represents our features. Finally, we used the traditional
feed-forward MLP for the type of NN and used only 6–16 number
of neurons in the hidden layer.

Table 2: Confusion Matrix

Predicted Class

Anomaly Regular

Actual Anomaly True Positives (TP) False Negatives (FN)

Class Regular False Positives (FP) True Negatives (TN)

3.3 Evaluation Metrics
We use standard metrics for binary classification, which include
Overall Accuracy (OA), Precision (PR), Recall (RC), and F-measure
(F1), such as in [10, 13]. Additionally, since the data is highly imbal-
anced between anomalous and non-anomalous periods, i.e., small
number of samples belonging to the anomaly class, we also propose
a skewed measure of accuracy known as "Balanced Accuracy" (BA).
Among accuracy metrics, BA is more reliable since it penalizes
accuracy if the anomaly is not detected, as more weight is assigned
to the minority class. The accuracy measures are taken from the
True Positives (TP), False Positives (FP), True Negatives, (TN), and
False Negatives (FN) derived from the confusion matrix in Table 2.
PR measures the ability to detect without necessarily introducing
false alarms, while RC measures the ability of the classifier to detect
all anomalies, i.e., also known as TP rate. Finally, F1 is the balanced
scale between PR and RC. For this reason, F1 and BA are metrics
that appropriately represent unbalanced classes. The metrics are
calculated as follows:

Overall Accuracy (OA) =
TP +TN

TP + FP +TN +TN
(1)

Balanced Accuracy (BA) =
T P

T P+F P +
T N

TN+FN
2

(2)

Precision (PR) =
TP

TP + FP
; Recall (RC) =

TP

TP + FN
(3)

F −Measure (F1) = 2
PR ∗ RC

PR + RC
(4)

Given the concern regarding data imbalance, F1 was chosen to be
the best metric in the training phase.

In Figure 3, we also compute the Receiver Operating Charac-
teristic (ROC) and the Area Under the Curve (AUC) to measure
the model performance. ROC curves are based on the graph of
TP against FP rate for different classification thresholds. The AUC
provides the measure of separability, which tells howmuch the clas-
sifier can distinguish between different classes. Having larger AUC
means that the system distinguishes better between anomalous and
non-anomalous instants.

Table 3: Our Classifier Set-up

SVM Models
Training

Test
TTNet IndoSat TM AWS

Model A x ✓ ✓ ✓ TTNet
Model B ✓ x ✓ ✓ IndoSat
Model C ✓ ✓ x ✓ TM
Model D ✓ ✓ ✓ x AWS

4 PERFORMANCE EVALUATION
In this section, we discuss the results and comparison of the classi-
fiers. Our data is split into training and test datasets for different
incident combinations, as shown in Table 3. This allows the Models
A—D to infer their performance on the test datasets that do not
influence the training dataset itself. These combinations evaluate
the strength of predicting unknown anomalies from training on
existing anomalies. This implementation captures the real-world
scenario where we currently have known dataset and see if it will
detect unknown future events.

4.1 Data Analysis
Figure 2 shows the graph features of TTNet and TM events. We
do not show Indosat and AWS due to space constraints. The graph
emphasizes a sudden drop of centrality values during the TTNet
(same case for IndoSat), in opposite to a sudden increase in TM
(same case for AWS).

Graph features other than the centrality metrics also exhibit
sudden change but in opposite behavior. For the eccentricity and
average neighbor degree, as the centrality decreases, the number
of links also decreases, potentially increasing the shortest path
distances. For the clustering coefficients, the decrease in centrality
means that the links directed to the AS decrease, and the links
among its neighbors potentially increase. Therefore, we observe
an increase in the clustering coefficients. Thus, for the TTNet and
IndoSat incidents, the centralitymetrics decrease, while eccentricity,
average neighbor degree, and clustering coefficients increase. On
the other hand, due to the characteristics of the incidents, TM and
AWS show the opposite behavior.

The z-score normalization [20] was used to transform the data
into a zero-mean distribution with unit variance for each feature.
Then, to analyze the differences, we split the datasets into anoma-
lous and non-anomalous instants for each feature, as shown in
Figure 2. During the non-anomalous instant, the values are very
close to the mean (≈ 0), which indicates the robustness of the mea-
sure during a non-anomalous instant. For the anomalous instant,
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Figure 2: Graph feature characteristics for TTNet and TM events split into anomalous and non-anomalous instants

the values tend to vary more widely, clearly showing the difference
between both instants.

Table 4: Classification with SVM

Model
Training Metrics Classification Results (Test)

FSA NoF C γ F1 OA BA F1 PR RC

A MID 3 2−9 2−3 69.18 97.57 90.41 85.48 89.56 81.74

B MI 7 2−6 2−6 72.12 99.79 96.74 95.08 96.66 93.54

C χ2 4 2−7 2−4 68.53 99.38 87.84 86.15 100 75.68

D χ2 2 2−4 2−4 73.54 99.23 79.13 71.79 93.33 58.33

4.2 Experimental Results
Our results show that all the algorithms yield high detection rates.
MLP and SVM have achieved the best results. Here, we focus on
showing only SVM classifier results, as reported in Table 4. SVM
performed best with RBF kernels, which are also found in [13].

For SVM, TTNet (Model A) can be detected with 90.41% BA using
degree centrality, eccentricity, and ave. neighbor degree, which are
selected by MID Feature Selection Algorithm (FSA). For IndoSat
(Model B), SVM reaches 96.74% BA (99.8% OA) using seven fea-
tures (i.e., five centrality metrics with ave. neighbor degree and
square clustering coefficient). Detecting TM (Model C) also yields
87.8% BA (99.4% OA) with χ2 as the FSA. The features include close-
ness, eigenvector, harmonic centralities, clique number, and square
clustering. Most feature combinations detected the TM incident.

Similar to DT and RF, SVM yields the highest accuracy with
IndoSat (Model B) and also achieves the lowest accuracy with AWS.
All detectors achieved the lowest detection with AWS. Knowing
that AWS is a particular case, we can conclude for the other three
incidents that graph features are independent of ML algorithms.

Regarding features, AWS is detected using clique number with
75% BA (99.2 % OA) and clique size with 79.2% BA (99.3% OA), while
Indosat, TM and TTNet are more likely to be detected by centrality
metrics. These results show that centralitymetrics aremore likely to
detect large-scale incidents while metrics that measure the grouping
factor (e.g., clustering coefficient, cliques, triangles) are more likely
to detect small-scale incident. Herewith, a plausible explanation
is due to the robustness of the centrality features. Since it mainly
measures the links to itself, small changes in these links do not pro-
vide significant changes. On the other hand, measures on grouping

tendency take into account the connection between neighboring
nodes, which arguably are more visible for small-scale incidents.
During a small-scale incident, the small number of connections
towards the node being measured will likely tend to connect to
their neighboring nodes instead (i.e., forming cycles). Some links of
the affected node disappear, while other new connection appears
in the neighborhood of the affected AS. This, in turn, increases the
measures of the features based on grouping (and remain undetected
by centrality metrics). While it remains to be further studied, cen-
trality metrics have the tendency to be more robust to noise and
more reliable measures for large-scale incidents.

Regarding accuracy, AWS is detected the least among the four
events. This result can be traced to its training set. In this model
(model D), it is trained on three large-scale events, whichmeans that
the anomaly pattern of small-scale events is not taken into account,
resulting in lower accuracy of prediction. This also supports the
result that model B is the best model configuration as it is trained
from both large and small-scale attacks. To improve our detection,
we plan to extend our dataset and include more types of attacks.

We also evaluated the features by using them as individual inputs
to the ML methods. The results provide information regarding
which feature dominates on accuracy. The overall top five BAs for
single feature prediction include, on average: node clique number
(80.7%), number of cliques (78.5%), triangles (77.4%), eigenvector
centrality (72.7%), and closeness centrality (71.9%).

4.3 Performance Comparison
We compare the performance of the ML algorithms and determine
which one provides the best results using the accuracy and AUC
metrics. The accuracy provides the "correctness" of the classifier in
prediction while AUC provides the measure of class separability.
AUC measures the classifier’s "confidence" in its decision.

Accuracy. The MLP detector outperforms on average all other
ML method’s accuracy, 88.83% BA (99.01% OA), followed by SVM
with a very small margin, 0.3% BA. Note that MLP already provides
the best accuracy, even though we considered only a single hidden
layer in our evaluations. Moreover, the MLP detector with a single
hidden layer is enough to distinguish between anomalous and non-
anomalous periods, indicating that graph features have distinct
properties that are simple enough to be detected by conventional
ML algorithms.
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Figure 3: ROC Curves and the AUCs of the ML models (showing only the top 3 ML algorithms)
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Figure 4: A 2-feature SVM decision boundary

Following SVM, DT and NB are the next best detectors, with RF
performing worst on average with 82.56% BA (98.6% OA). However,
RF underperforms DT, where it is interesting to note the changes
as the dataset expands significantly. In theory, this may unveil the
advantage of RF over DT.

AUC. Figure 3 shows the ROC curves of each model for the top
three algorithms with their respective AUC values. On average, the
SVM detector reached the highest AUC among all models, namely,
0.94 as shown in Figure 3a. Thismeans that SVMmodels have higher
confidence in its prediction, with 94% probability to distinguish
correctly between anomalous and non-anomalous instants. SVM is
followed by NB, MLP, DT and RF detectors, respectively. NB also
yields high AUC for all anomalous instants as shown in Figure
3c, reaching on average 0.91. For MLP, although performing best
on Models A and B, it only reached 0.81 with Model C, which is
inferior to SVM, NB and DT altogether.

4.4 Result Interpretation
Since SVM is concluded as our best classifier, we show how our
SVM models can be interpreted. Our 2-feature suboptimal SVM
solution of model C is shown in Figure 4. It shows a non-linear
decision boundary built from the training phase. The points in
the figure are the samples from the test set (i.e., TTnet event). The
classifier predicts "non-anomalous" when both degree and harmonic
centrality values are near to the mean, which validates our intuition.

These values near the mean are values near to zero in the figure
as produced by the z-score normalization. Although, harmonic
centrality is stricter since samples with smaller variations from
the mean fall in the anomalous region. Decision boundaries help
us interpret how the model predicts; however, it becomes more
difficult when the dimensions in the feature space increase.

5 CONCLUSION
We compared the ability of different ML algorithms in detecting
BGP path leaks from graph features. We have shown that graph
features can be used to detect anomalies. MLP achieved the highest
accuracy ("correctness"), which reached an average of 88.9% BA
(99.01% OA), while SVM achieved the highest AUC Curve ("robust-
ness"), which reached 94% on average. Given that SVM was only
outperformed by 0.3% on average accuracy and it has been far more
robust discriminating anomalous and non-anomalous periods, we
conclude that it is our best classifier.

Interestingly, our results also provide preliminary views regard-
ing large and small-scale attacks: centrality metrics are more likely
to detect large-scale events, while metrics that measure the group-
ing factor (e.g., clustering coefficient, triangles, cliques) are more
likely to detect small-scale events.

Most MLmethods, such as in [13], still use the worm trio (Nimda-
Code Red-Slammer) from 18 years ago. Thus, the set of attacks we
considered was a step forward. Although the patterns in this dataset
are fairly easy to detect, thanks to the proposed robust graph fea-
tures, the use of ML prepares our detector for anomalies exhibiting
more sophisticated patterns. The investigated ML techniques also
prepare our detectors for future work in anomaly source detection.

We will continue to extend the number of events and evaluate
our system by running it in a live deployment. Although, in the
deployment, we expect that some of the features that are not com-
putable in real-time will not be included. For instance, betweenness
and load centrality are computationally expensive since they both
need to compute the shortest path of all node pairs.
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