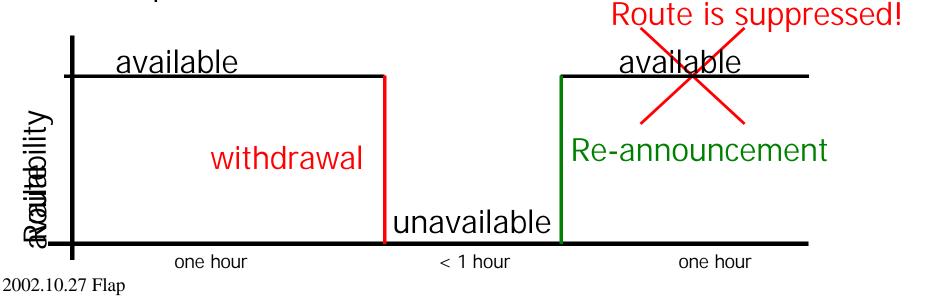

Route flap damping: harmful?

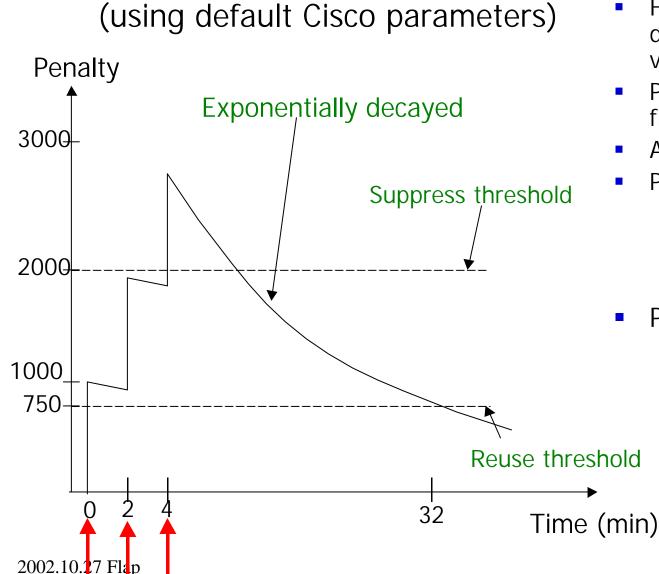
NANOG / Eugene 2002.10.28 Randy Bush (IIJ) Tim Griffin (AT&T Research) Z. Morley Mao (UC Berkeley) <http://psg.com/~randy/021028.zmao-nanog>


Verified using BGP Beacons

- BGP Beacon:
 - A prefix that is announced and withdrawn at well-known times

Transient instability

- Router reboot
 - Due to circuit or software upgrade, etc.
- A single link flap
 - Due to network congestion, link connectivity problems etc.



What is route flap damping?

RFC2439

- Supported by all major router vendors
- Believed to be widely deployed
- Responsible for Internet stability?
- Goals:
 - Reduce router processing load due to instability
 - Do not sacrifice convergence times for wellbehaved routes (!?)

How does route flap damping work?

- For each peer, per destination, keep a penalty value
- Penalty increases for each flap
- A flap is a route change
- Penalty decays exponentially

$$P(t') = P(t)e^{-I(t'-t)}$$

- Parameters:
 - Fixed:
 - Penalty increment
 - Configurable: half-life, suppress-, reuse-threshold, max suppressed time

Router vendor default values

Parameter	Cisco	Juniper
Withdrawal penalty	1000	1000
Re-advertisement penalty	0	1000
Attributes change penalty	500	500
Suppress threshold	2000	3000
Half-life (min)	15	15
Reuse threshold	750	750
Max suppress time (min)	60	60

Cisco

- Three flaps can suppress route
- Juniper
 - Minimum four flaps to suppress route
- Example:
 - Three flaps with 2 min interval
 - Cisco: suppress on the third flap for more than 28 minutes

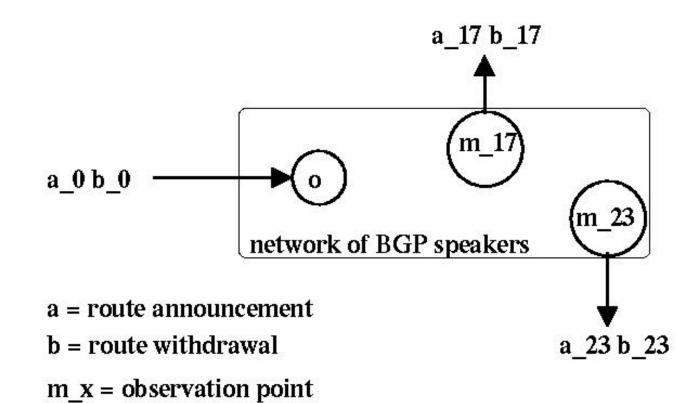
Cascaded withdrawals! (2)

- Peer: 212.47.190.1, AS=9177 from RIPE
- In response to WD-beacon at 18:00, Aug 10th.
- Using Cisco setting + RIPE229 recommendation

Time 8/10	A/W	ASPath	Penalty
18:00:15	А	9177 3320 1 2914 3130 3927	500
18:00:41	A	9177 6730 5400 2914 3130 3927	990
18:01:41	A	9177 3320 2914 3130 3927	1445
18:03:06	A	9177 3320 1239 2914 3130 3927	1853
18:03:35	W		2812
18:04:03	A	9177 6730 5400 2914 3130 3927	2752
18:04:31	W		3694

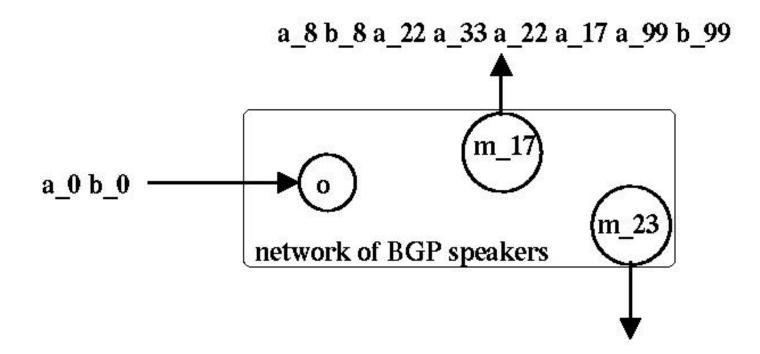
Cascaded withdrawals! (1)

- Peer: 213.200.87.254, AS=3257 from RouteViews
- In response to WD-beacon at 01:00, Aug 20th.
- Using Cisco setting + RIPE229 recommendation
 - (Note: first 2 announcements differ in community attributes)

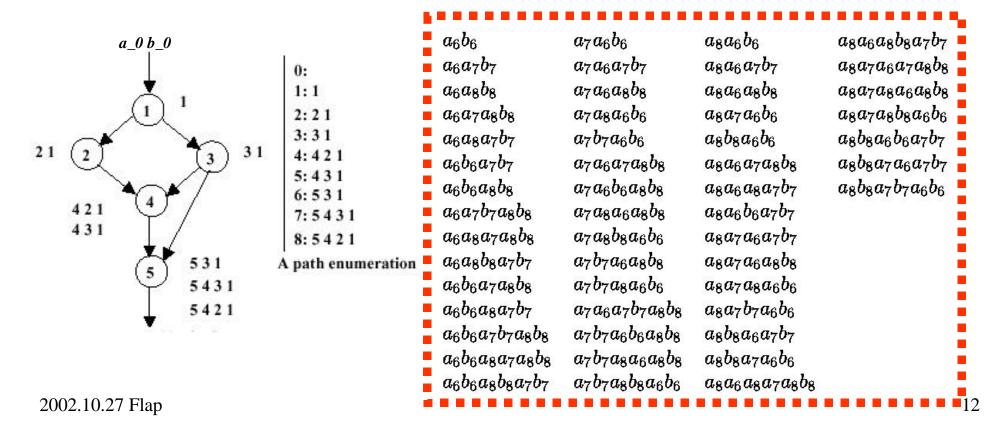

Time 8/20	A/W	ASPath	Penalty
01:00:16	A	3257 1299 2914 3130 3927	500
01:00:47	A	3257 1299 2914 3130 3927	988
01:00:50	W		1985
01:00:50	A	3257 1299 4200 2914 3130 3927	1985
01:01:13	A	3257 1299 701 2914 3130 3927	2451
01:02:05	W		3354

Above suppress threshold

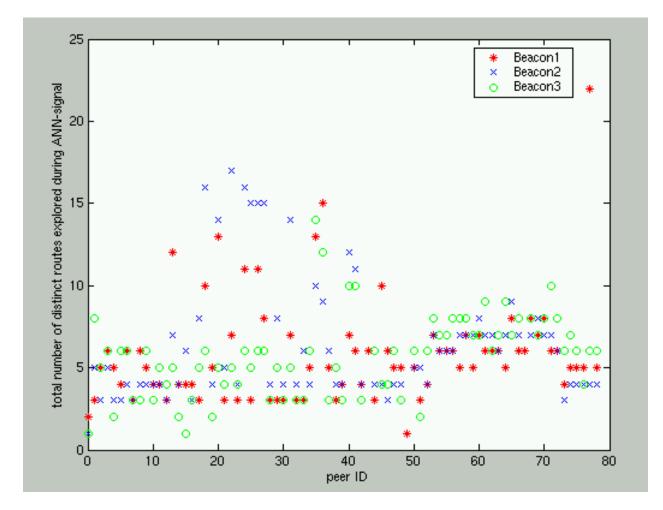
Why does this happen?


- BGP is a path vector protocol
 - Explores alternate routes before withdrawal
 - Topology dependent
- Delay in messages due to variations in
 - MinRouteAdver timer values
 - Propagation delays
 - Router processing overhead
- Route flap damping parameter setting
 - Cisco/Juniper punishes virtually all route changes
 - Default setting and RIPE-229 recommendation are too aggressive

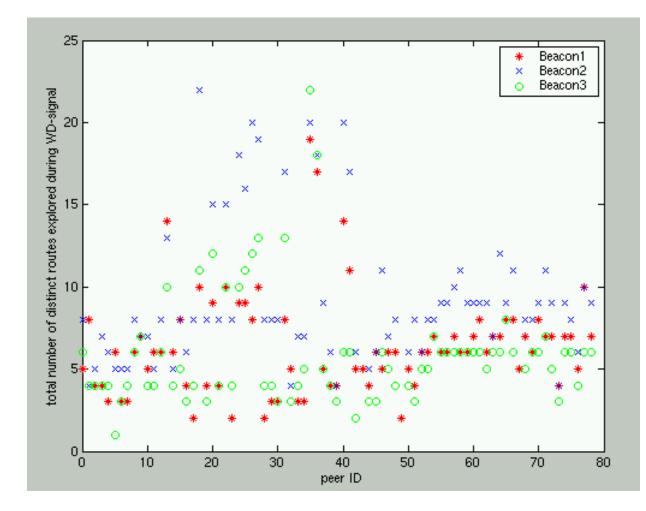
The Naïve View


2002.10.27 Flap

... reality is a wonderful thing



No wonder I'm going crazy trying to interpret those BGP updates


It is easy to construct a 5 node BGP system where a simple Announce/Withdraw signal (a_0 b_0) at one node can produce any of these 52 output signals at another...

Max no. updates for ANN-signal

Max no. updates for WD-signal

2002.10.27 Flap

Multihoming Won't Save You

- Damping is not per path
- Damping is per prefix!
- Sure, multi-homing gives you more paths
- But damping just loves more paths

Preliminary ideas to improve Route flap damping

- Change the constants
 - Descrease suppression threshold
 - Decrease penalty increment, especially for attribute changes
- Change the Algorithms
- Do we really need damping at all?
- Note that damping
 - is opaque
 - happens on the other side of the internet

2002.10.27 Flap and is hard to debug

Existing BGP Beacons

Prefix	Source AS	Start date	Upstream Providers	Beacon Host
198.133.206.0/24	3927	8/10/02	AS2914, AS1	Randy Bush
192.135.183.0/24	5637	9/4/02	AS3701, AS2914	David Meyer
203.10.63.0/24	1221	9/25/02	AS1221	Geoff Huston
198.32.7.0/24	3944	10/24/02	AS2914, AS8001	Andrew Partan

- Announced and withdrawn with a fixed period (2 hours) between updates
- 1st daily ANN: 3:00AM GMT
- 1st daily WD: 1:00AM GMT

Reference

- RIPE-229: "RIPE Routing-WG Recommendations for Coordinated Route-flap Damping Parameters", 2001
- RFC 2439: "BGP Route Flap Damping", 1998
- Randy Bush, Tim Griffin, Z. Mao, "Route flap Damping: harmful?" RIPE 43, 2002
- Tim Griffin, "What is the sound of one route flapping" Dartmouth talk slides, June 2002
- C. Labovitz, G. R. Malan, F. Jahanian, "Internet Routing Instability", TON 1998
- C. Labovitz, R. Malan, F. Jahanian, "Origins of Internet Routing Instability", Infocom 1999

More references

- C. Labovitz, A. Ahuja, F. Jahanian, "Experimental Study of Internet Stability and Wide-Area Network Failures", FTCS 1999
- C. Labovitz, A. Ahuja, A. Bose, F. Jahanian, "Delayed Internet Routing Convergence" Sigcomm 2000
- C. Labovtiz, A. Ahuja, R. Wattenhofer, S. Venkatachary, "The Impact of Internet Policy and Topology on Delayed Routing Convergence", Infocom 2001
- Z. Mao, R. Govindan, G. Varghese, R. Katz "Route Flap Damping Exacerbates Internet Routing Convergence" Sigcomm 2002